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SUMMARY

Food intake serves tomaintain energy homeostasis; however, overeating can result in obesity, which is asso-
ciated with serious health complications. In this review, we explore the intricate relationship between over-
eating, obesity, and the underlying neurobiological mechanisms. We review the homeostatic and hedonic
feeding systems, highlighting the role of the hypothalamus and reward systems in controlling food intake
and energy balance. Dysregulation in both these systems leads to overeating, as seen in genetic syndromes
and environmental models affecting appetite regulation when consuming highly palatable food. The concept
of ‘‘food addiction’’ is examined, drawing parallels to drug addiction. We discuss the cellular substrate for
addiction-related behavior and current pharmacological obesity treatments—in particular, GLP-1 receptor
agonists—showcasing synaptic plasticity in the context of overeating and palatable food exposure. A
comprehensive model integrating insights from addiction research is proposed to guide effective interven-
tions for maladaptive feeding behaviors. Ultimately, unraveling the neurobiological basis of overeating holds
promise for addressing the pressing public health issue of obesity.
INTRODUCTION

The prevalence of obesity is increasing globally.1 In 2035, more

than half of the adult population and 40% of children (ages 5–

19 years) will be overweight (body mass index [BMI] > 25, World

Obesity Atlas, 2024). Obesity, defined as a BMI > 30 kg/m2 in

adults (for children and adolescents: BMI at or above the 95th

percentile for age and sex), affects both developing and devel-

oped countries, especially the United States, leading to severe

health complications such as diabetes, cardiovascular diseases,

and certain cancers.2 The ‘‘obesity epidemics’’ increase

morbidity and mortality, ultimately substantially decreasing the

quality of life.

Overeating plays a more prominent role in the rise of obesity

than decreased physical activity.3 Sedentary lifestyles may

contribute because of decreased energy spending, but while

weight gain is undeniably driven by the difference between the

energy spent and energy ingested, there is a consensus that

enhancing physical activity may be insufficient to prevent over-

weight or restore normal weight in individuals with obesity. Phys-

ical activity, particularly when attempting to lose weight, invari-

ably triggers an appetite that quickly compensates for and

sometimes exceeds the energy spent.4–7

The increasing availability of calorie‑dense foods has con-

tributed to rising obesity rates in many populations. Foods

that also combine high levels of fat and sugar, in particular,
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strongly promote overeating.8 This nutrient combination rarely

occurs in nature—with only a few exceptions, such as durian,

coconut meat, and cashew nuts—but is characteristic of highly

processed products9 (e.g., milk chocolate or ice cream).

Although milk also contains both fat and sugar, its relatively

low caloric density explains why it is seldom consumed in

excess. Humans can easily increase their daily caloric intake

by �500 kcal when exclusively offered an ultra-processed

diet.8 Palatable food with high caloric density may thus be

the origin of an actual ‘‘food addiction’’10 (see Ziaudden and

Fletcher11). The hypothesis posits that continued exposure to

palatable food of high caloric density may override metabolic

needs and cause a loss of control in regulating food intake in

some individuals. While this scenario is appealing, its underly-

ing neurobiological underpinnings have not been extensively

tested.

This review examines the anatomy and physiology of neural

systems governing feeding behavior and categorizes various

forms of monogenic and polygenic obesity, which may map

onto distinct neural circuits. We ask how these systems adapt

when overeating and evaluate the literature on the food

addiction hypothesis. The review will present evidence for

synaptic plasticity in feeding circuits underlying overeating.

We conclude by assessing the efficacy and limitations of cur-

rent treatments and proposing a roadmap for future therapeutic

approaches.
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Figure 1. Schematics of homeostatic and hedonic circuits
The hedonic feeding system comprises the mesolimbic dopamine projection
from the ventral tegmental area (VTA) to the nucleus accumbens (NAc), where
a population of D1R-expressingmedium spiny neurons (D1R-MSNs) project to
the lateral hypothalamus (LH), from where GABA neurons project on VTA
GABA neurons, creating a disinhibitory circuit motive. Activation of this circuit
by food can lead to positive reinforcement. The homeostatic system includes
the arcuate (Arc) and paraventricular hypothalamus (PVH). The two major
types of GABA neurons projecting from ARC to PVH are AgRP and POMC
neurons, which are under the control of the hormones leptin, ghrelin, and in-
sulin. PVH neurons express MC4 receptors and project to the parabrachial
nucleus (PBN), which controls motor circuits of eating. The activity of AgRP
neurons codes for hunger, which triggers food intake and may drive negative
reinforcement. Some D1R-MSNs project back to the VTA preferentially con-
necting to GABA neurons, which relay the information to more dorsally pro-
jecting DA neurons. Within a few loops, this reaches the nigrostriatal projec-
tion. Orbitofrontal to dorsal projection neurons have been implicated in
compulsive reward seeking. Several projections serve as the crosstalk be-
tween the homeostatic and the hedonic systems. These include ArgRP neu-
rons projecting to the LH and POMCneurons projecting to the NAc, where they
can release endorphins. BLA, basolateral amygdala; Xi, xiphoid body; PVT,
paraventricular thalamus; mPFC, medial prefrontal cortex.
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HOMEOSTATIC AND HEDONIC FEEDING SYSTEMS

It is common sense that the feeling of hunger signals a strong

drive state that ultimately promotes eating. Eating relieves the

negative affective state associated with hunger, fulfilling the

criteria of negative reinforcement.12,13 Inmost instances, individ-

uals stop eating because they are sated, and the negative rein-

forcement drive dissolves. Highly palatable food, however,

may override satiety and lead individuals to eat when they are

no longer hungry. Consequently, by definition, the individual

overeats (i.e., the caloric intake exceeds energy demands at a

given moment), which may lead to weight gain if repeated. This

may be an evolutionary advantage in animals, as it allows them

to accumulate fat and replenish energy stored.14 Conversely,

the same system can stop food intake in a threat situation,

thus exerting a sentinel function.15,16 This interplay between hun-

ger-driven eating and pleasure-driven overconsumption under-

scores the need to consider both homeostatic and hedonic sys-

tems (and their interplay) when examining the regulation of

feeding behavior.
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Feeding behavior is regulated by two closely intertwined sys-

tems: the homeostatic system, which ensures energy balance,

and the hedonic system, which drives food consumption based

on pleasure and reward.17–19 Though often considered distinct,

these systems overlap considerably in both function and anat-

omy, contributing to the complexity of overeating behaviors. In

the former, the goal is to meet energy demands to keep body

weight in a homeostatic range. Eating solely for enjoyment

rather than energy needs may serve mental well-being but

eventually can disrupt the body’s energy balance and can

contribute to weight gain. Ample work has identified the hypo-

thalamus as a critical locus for controlling food intake, with

some medial nuclei driving homeostatic control and lateral

nuclei together with the mesolimbic system driving hedonic

control (Figure 1).

HOMEOSTATIC FEEDING CIRCUITS

Within the medial hypothalamus, there are many intercon-

nected nuclei, two of which have been directly implicated in ho-

meostatic feeding: the N. arcuatus (arcuate nucleus; ARC) and

the paraventricular nucleus (PVH).20 Two key populations of

g-aminobutyric acid (GABA) neurons in the arcuate nucleus

(ARC)mediate this process: agouti-related peptide (AgRP) neu-

rons, which become active when hungry to promote feeding,

and pro-opiomelanocortin (POMC) neurons, which inhibit

feeding when energy stores are sufficient. Recent transcrip-

tomics analysis with single-cell resolution has revealed an

astonishing diversity among POMC and other hypothalamic

cell types.21 A molecular blueprint study showed ARC POMC

neurons can be subdivided based on gene expression profiles

into several unique cell types.22 Integrating these findings with

functional data highlights that the heterogeneity in gene

expression may correspond to varied roles in energy balance,

stress, and reward. The traditional view of POMC neurons as

a homogeneous population must give way to a nuanced system

where each subpopulation contributes uniquely to regulating

energy homeostasis and beyond. More research will be needed

to understand the functional diversity of POMC neurons fully.23

AgRP neurons are modulated by signals like low blood

glucose and the hormone ghrelin, secreted by the stomach dur-

ing fasting13,24,25 but inhibited by leptin. A population of leptin re-

ceptor-expressing basonuclein 2 (BNC2)-positive GABA neu-

rons make monosynaptic connections to AgRP neurons.26

POMC neurons are activated by satiety signals such as leptin

and insulin, released by adipose tissue and the pancreas,

respectively, to reduce food intake.27,28 These neurons project

to many brain regions, including to the PVH,29 where the balance

between POMC and AgRP populations is tightly regulated ac-

cording to the body’s energy needs (Figure 2). Melanocortin 4 re-

ceptors (MC4R)-expressing neurons in the PVH thus integrate

neuropeptide signals. AgRP axons release neuropeptide Y

(NPY) to lower cyclic AMP (cAMP), while POMC axons release

alpha-melanocyte-stimulating hormone (a-MSH) to increase

cAMP in PVH MC4R neurons.30 In a state-dependent manner,

NPY and a-MSH peptides compete to control cAMP levels—

NPY signaling is blunted by high a-MSH when satiated, while

a-MSH signaling is blunted by high NPY when hungry. Energy
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Figure 2. Divergent effects of leptin on neuronal activity
(A) Circulating leptin levels over 24 h. Levels are slightly higher during the night and increase after each meal. In individuals with obesity, the curves shift to higher
levels overall.33

(B) Ghrelin decreases after each meal and is about 30% lower in individuals with obesity.34,35

(C) Leptin receptors are cytokine receptors that activate, among other signaling pathways, PI3K, which has two distinct effects. First, it can activate Akt, which
binds to KATP channels to allow for K+ to flux out of the cell, leading to hyperpolarization.36 Alternatively, it drives the synthesis of ATP, inhibiting KATP channels
such that cells depolarize. BNC2 neurons and POMCneurons increase their firing in response to leptin (blue channels), whereas AgRP neurons are shut down (red
channels).26 The reciprocal GABA inhibition between POMCand AgRP neurons enhances the overall effect. In the downstreamPVH a -MSH andNPY compete to
regulate cAMP in MC4R neurons. Note that additional signaling pathways are not shown for simplicity.
(D) Ghrelin receptors inhibit Cav3.3 channels37 and Kv7/KCNQ channels.38 The former can explain decreased activity in POMC neurons, the later depolarization,
and stronger firing of AgRP cells.
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deficit signals activate AgRP neurons, promote feeding, and

reduce energy expenditure. There are diverging interpretations,

whether this is an innate or learned response. Food cues directly

inhibit AgRP neurons and activate POMC neurons to adjust

feeding behaviors in real time,31 where, by contrast, another

study32 interprets the reduction in AgRP neuron activity as a

learned reduction of negative-valence signals, framing it as

relieving hunger-driven discomfort rather than an anticipatory

switch to satiety. For the first, the rapid neuronal response to

food is an innate and direct modulation that does not require

prior learning. The latter suggests that AgRP neuron inhibition

through external cuesmay involve Pavlovian learning, as animals

can learn to associate sensory cues with hunger relief.

POMC neurons, on the other hand, suppress feeding and in-

crease energy expenditure, activated by energy-sufficiency sig-

nals. Sensory food perception can affect hepatic metabolism via

melanocortin release from POMC neurons via a sympathetic

nerve signal.39 Moreover, POMC and AgRP neurons are recipro-

cally connected. Reduction of POMC neuron activity may disin-

hibit AgRP neurons, leading to excessive hunger. Glucagon-like

peptide-1 (GLP-1), secreted by intestinal L cells, reduces food

intake by acting on GLP-1 receptors on AgRP and POMC neu-

rons40 and likely other brain regions like the nucleus of the soli-

tary tract41 and lateral septum (LS).42,43

Simultaneous activation of AgRP neurons and inhibition of

POMC neurons resulted in a synergistic increase in food intake

compared with when only one neuronal type was modulated.
These conclusions based on chemogenetic manipulations44

are confirmed by monitoring the neural activity of both cell types

in feeding cycles across multiple time scales.45

HEDONIC FEEDING CIRCUITS

Homeostatic needs do not solely dictate the drive to eat. The he-

donic feeding system is responsible for the consumption of food

based on its rewarding properties, irrespective of energy balance.

The lateral hypothalamic area (LHA) and its regulation of the mes-

olimbic dopamine system, particularly the ventral tegmental area

(VTA) and nucleus accumbens (NAc), are central to this pro-

cess.46–48 GABA neurons in the LHA project to the VTA, where

they disinhibit dopamine neurons,49,50 driving food-seeking

behavior and consumption of highly palatable foods, even when

the body does not require energy.13,51 VTA dopamine neurons

integrate oral, gastrointestinal, and post-absorptive signals during

ingestion,52 which may provide a substrate for associative

learning mechanisms between food or water sensory qualities

and restoring fluid or nutrients. Consistent with this, dopamine

release in the NAc, triggered by the sight, smell, or taste of desir-

able foods, further reinforces this behavior, promoting eating

beyond physiological needs.53,54 Direct intragastric delivery of a

combined fat-sugar solution increases nigrostriatal dopamine

release andovereatingmore strongly than fat or sugar alone.6 Pro-

longed high-fat diet exposure reduces dopamine reuptake in

rats.55 In humans, D2 dopamine receptor binding is reduced in
Neuron 113, June 4, 2025 3
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subjectswith obesity relative to controls,56 and viral knockdownof

striatal D2 receptors results in compulsive-like food seeking in

rats,57 further suggesting causal links between the brain dopa-

mine systems and maladaptive feeding.

Additionally, a population of D1R-expressing medium spiny

neurons (MSNs) of the NAc project to the LHA,58 where they

preferentially synapse onto GABA neurons.47 At the onset of

feeding, these cells fall silent, which enables feeding, and

resume their activity upon termination of the feeding bout.

Closed-loop optogenetic experiments of this circuit have

demonstrated powerful control over feeding with rapid onset

upon stimulation. A mouse will stop feeding instantaneously

when the NAc-LHA projection is stimulated, even if hungry,

and will readily initiate feeding when the projection is inhibited,

even when sated. This demonstrated that the NAc-LHA projec-

tion can maintain food intake exceeding metabolic needs.

Glutamatergic neurons of the LHA also play a critical role in

suppressing food intake via their projections to the lateral habe-

nula and VTA. Ablation of LHA glutamatergic neurons increases

food intake and body mass,48 and the activity of these neurons

becomes blunted over time in diet-induced obesity models.59

The activity of some LHA neurons is also modulated by leptin

or ghrelin administration,60 although it is unclear if this is through

a circuit or if there are direct effects within the LHA. Critically, op-

togenetic stimulation of LHA GABAergic and glutamatergic neu-

rons bidirectionally produces reward seeking or aversive escape

behaviors, further highlighting these systems’ critical role in

feeding and reward processing. High-fat diet exposure alters

cell type-specific gene expression within the LHA, impacting

both GABAergic and glutamatergic neurons.59 These diet-

induced changes in gene expression and neural activity within

LHA neurons underscore the intricate crosstalk between homeo-

static and hedonic systems, which is crucial for understanding

the regulation of feeding behaviors. A recent normative frame-

work postulates that need-encoding and motivation-encoding

neurons are segregated within the medial and lateral hypothala-

mus, respectively, with AgRP neurons in the medial hypothala-

mus encoding need and leptin receptor-expressing neurons in

the LHA encoding motivation.61 The study applied a normative

framework, experimentally validated by cell type-specific opto-

genetic manipulations to characterize the neural substrates of

need and motivation within hypothalamic neuronal populations

and settled on AgRP and lateral hypothalamus leptin receptor

(LHLepR) neurons. Their model provides a temporal dynamic un-

derstanding of the basic properties of food intake. These insights

emphasize that the functional and anatomical interplay between

the medial and lateral hypothalamus may serve as a nexus for

integrating homeostatic signals of need with hedonic drivers of

motivation, facilitating adaptive feeding behaviors in response

to dynamic internal and external cues.

CROSSTALK BETWEEN HOMEOSTATIC AND HEDONIC
SYSTEMS

Although often studied as separate entities, the homeostatic and

hedonic feeding systems work together, with substantial cross-

talk that modulates feeding behavior. Emerging evidence shows

that the boundaries between these systems are flexible, and
4 Neuron 113, June 4, 2025
both systems are likely engaged during all feeding conditions.

For instance, while food deprivation can activate homeostatic

circuits, the rewarding properties of food are enhanced when

hungry and can further drive consumption, even after energy

needs are met. Signals from the hypothalamus can influence

the mesolimbic reward pathway, and likely vice versa, creating

a complex interaction between metabolic and reward cir-

cuits.32,52,60 For example, while acting on AgRP neurons to stim-

ulate hunger, ghrelin also enhances the activity of dopamine

neurons in the VTA, linking hunger with reward.62 Similarly, leptin

has been shown to modulate dopamine signaling in the VTA,

reducing food-seeking behavior in response to satiety.63,64

These interactions suggest that overeating may arise from dis-

ruptions in the communication between these systems, where

hedonic signals drive excessive consumption of palatable,

high-calorie foods.

Another anatomical crosstalk between homeostatic and he-

donic feeding systems relies on POMC neurons, which project

from the arcuate (Arc) to the NAc.65 When cleaved, POMC yields

the predominant endogenous ligand of the m opioid receptor

(mOR), b-endorphin. Based on intra-cerebral injections of the

opioid antagonist naloxone, NAc mORs have been implicated in

the reinforcement effects of palatable food.66 When mORs are

blocked, rodents reduce sweet nutrient consumption but eat

normal quantities of chow. The cells releasing endorphins

and the relevant targets remain to be investigated. Several

hypothetical circuit effects could contribute. Presynaptic mORs

on glutamate terminals in the NAc can decrease the excitatory

drive onto MSNs and alleviate the inhibition of downstream

LHA neurons. mOR on D1R-MSNs could also affect reciprocal

inhibition between D1R- and D2R MSNs. Moreover, mORs on

cholinergic interneurons may silence these neurons, impacting

dopamine release via presynaptic nicotinic receptors. Endor-

phins may, therefore, enhance the palatability of food by medi-

ating interactions between homeostatic POMC-derived signals

and hedonic mOR activity within the NAc (and likely other brain

regions), linking energy balance mechanisms to reward-driven

feeding behavior. This hypothesis, however, still needs empirical

support.

The above examples illustrate shared pathways between the

hypothalamus and reward circuits, yet much of the crosstalk re-

mains unexplored. Future research should aim to disentangle the

mechanisms through which homeostatic and hedonic signals

integrate and how disruptions in this integration contribute to

overeating and obesity. Understanding this dynamic interplay

will be critical for developing interventions that can restore bal-

ance between these systems, potentially offering new strategies

to combat overeating and obesity.

OVEREATING CAN RESULT FROM A DYSREGULATED
HOMEOSTATIC FEEDING SYSTEM

Hypothalamic function is affected by several genetic syndromes

associated with overeating (Figure 3; Box 1). Leptin deficiency is

a rare genetic disorder affecting less than one in 1million individ-

uals.67 Affected infants and toddlers are constantly hungry and

eat up to 6000 kcal daily. Overeating can be treated by adminis-

tering recombinant leptin, reducing hunger and food intake, but it
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Figure 3. Monogenic vs. polygenic obesity: Schematic
representation of the effect size as a function of the alternate allele
frequency
Inspired by Akbari et al.70

Monogenic obesity is rare, but each gene variation has a large effect size and
typically leads to obesity during childhood. Examples are loss-of-function
mutations for leptin, leptin receptors, MC4R, or POMC and manifest with
associated symptoms and signs (e.g., red hair in POMC deficiency). Polygenic
obesity arises from cumulative variations in many hundreds of genes, each of
which only contributes very little. The individuals affected are typically adults,
and associated symptoms are the consequence of obesity (e.g., type 2 dia-
betes ). Monogenic forms preferentially touch the function of the homeostatic
system, while polygenic forms are caused by genes affecting the function of
the hedonic and homeostatic systems. References in Box 1.
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needs to be administered for life.68 Leptin resistance, a slightly

more frequent condition, refers to insufficient leptin receptor

function, leading to overeating, albeit to a lesser degree.69

Among the many physiological effects of leptin receptor activa-

tion, the inhibition of high-threshold channels like L-type voltage-

gated calcium channels (VGCCs) and the activation of ATP-
Box 1. One gene—many genes

Inmonogenic forms of obesity, a single gene strongly affects BMI.

that, when mutated, can drive obesity,71 affecting primarily home

(LEP) and the leptin receptor (LEPR), POMC, andMC4R.MC4Rm

rare monogenic form of obesity. Loss-of-function mutations inMC

effect size of 4.8 kg/m2 corresponding to an average body weigh

tations have been linked to low BMI.76 Deficiency in the POMC sy

the occupancy of MC4R on downstream neurons in the PVH.77 M

induces satiety. MC4Rs expressed in other brain regions affect p

regulation,78–81 explaining the syndromic nature of MC4R mutati

deletion, which affects several genes. For example, Prader-Willi s

abnormal DNA methylation, manifesting in weak muscle tone, hyp

resulting from hundreds of polymorphisms that each have only a

(GWAS) with 800,000 individuals revealed many loci with per-all

120 g for a person of average height.85 To date, more than 1,500 g

tion of the mesolimbic reward system or upstream systems that c

tems.86,87 Gene/environment studies confirmed increased obesit

associated protein (FTO) but also showed that physical activity and

to 40%.88,89
gated potassium (KATP) channels work together to suppress

cellular activity during eating rapidly. KATP activation may result

from the phosphatidylinositol 3-kinase (PI3K)-protein kinase B

(Akt) signaling pathway driven by leptin. In leptin-resistant indi-

viduals, this mechanism may be attenuated. Leptin deficiency

may also lead to overeating via the altered control of BNC2 neu-

rons onto AgRP neurons.26 Indeed, when the leptin receptor is

deleted in these neurons, mice overeat and become obese.

This implies that in contrast to the effect on AgRP neurons, leptin

receptors on BNC2 neurons normally would activate these cells.

Analogous conditions exist in the POMC system, where defi-

ciency also leads to overeating—the absence of a-MSH reduces

the occupancy of MC4R on downstream neurons in the PVH.77

Altered melanocortin signaling because of MC4R mutations is

another cause of monogenic overeating.90 GLP1, secreted by in-

testinal L cells, reduces food intake by acting on GLP-1 recep-

tors on AgRP and POMC neurons40 and likely other brain regions

like the nucleus of the solitary tract41 and LS.42,43

In line with the homeostatic-hedonic crosstalk described

above, diminished POMC neuron activity could thus disinhibit

dopamine neurons (because they release less GABA) in themes-

olimbic pathway, enhancing the reinforcing effects of food.While

complex, these forms of obesity share hunger as a predominant

symptom, can often be efficiently treated by substituting the

missing ligand, and relapse when treatment is stopped.
OVEREATING CAN RESULT FROM A DYSREGULATED
HEDONIC FEEDING SYSTEM

Another cause of overeating is the consumption of highly palat-

able food without hunger. This is often called the ‘‘dessert ef-

fect’’91 because desserts are, by design, highly palatable, with

a combination of sugar, fat, and salt that makes them extremely

enjoyable. This palatability makes it difficult to resist eating them

even when full. Hedonic eating is driven by the pleasure derived

from food taste and is often linked to cravings and emotional
Genetic screening of large cohorts has identified a dozen genes

ostatic feeding circuits. Examples include the genes for leptin

utations are the most common forms of the overall exceedingly

4Rmanifest in severe childhood-onset obesity,72–74 with a BMI

t increase of almost 18 kg.75 By contrast, gain-of-function mu-

stem also leads to overeating—the absence of a-MSH reduces

elanocortin binding to the receptor activates PVH neurons and

ain sensation, sexual function, anhedonia, and blood pressure

ons. Rare syndromic obesity can also arise from chromosomal

yndrome is caused by a partial deletion of chromosome 15 or

ogonadism, and hyperphagia.82 Common obesity is polygenic,

small effect.70,83,84 A recent genome-wide association study

ele effects lower than 0.04 kg/m2, corresponding to less than

enes have been implicated, many of which may affect the func-

an modulate addiction circuits, such as stress and anxiety sys-

y risk of previously identified loci such as fat mass and obesity-

a healthy diet can attenuate the effect of the FTO locus by 30%
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Figure 4. Dopamine transients during
feeding
In animals eating a specific type of palatable food
for the first time (novice), dopamine increases
when innate proximal food cues arise, such as an
odor, and is maximal when the animal starts
licking (black bar). This sensory and cephalic
phase lasts several tens of seconds. The gastric
and intestinal phases of accumbal dopamine are
observed tens of minutes later when the food is
absorbed. In expert animals, the maximal dopa-
mine transient is now shifted to the conditioned
stimulus, and only a little increase is seenwhen the
animal licks. The gastric and intestinal phases are
unchanged. Based on data from Swift et al.,6

Grove et al.,52 Schultz et al.,104 Roitman et al.,105

and Tellez et al.106
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eating.92 Sweet and fat nutrients indirectly activate the reward

system and promote several waves of dopamine release in the

ventral and dorsal striatum.6 Initially, dopamine release is primar-

ily triggered during ingestion, likely driven by learned associa-

tions between sensory cues and the post-ingestive effects of

food. This release is followed by a systemic response occurring

several minutes later, driven by nutrient absorption in the stom-

ach and intestines. The timing of this response depends on the

food’s composition, the nutrient absorption rate, and the activity

of enteric nervous system neurons that respond to specific nutri-

ents52,93–95 (Figure 4). Over time, with repeated experiences,

dopamine transients shift to predictive cues, such as the sight,

smell, or taste associated with appealing foods.96 The hypothe-

sis is that cued dopamine signals, which may code for food

value, can override fullness signals, leading to continued eating.

Consistent with this, presenting conditioned stimuli previously

associated with food elicits robust feeding in sated animals.97

Two recent studies corroborate the critical role of themesolimbic

dopamine system in hedonic overeating. Disinhibiting dopamine

neurons in the ventral tegmental area—by inhibiting the up-

stream glutamatergic neurons of the peri-locus ceruleus that

project to VTA GABA neurons—prolongs ongoing food intake,

a feeding-promoting mechanism that counteracts the appetite-

suppressing effects of semaglutide.98 Moreover, chronic con-

sumption of a high-fat diet in mice diminishes the hedonic value

of calorie-rich foods by disrupting neurotensin signaling in the

projection from the lateral nucleus accumbens to the ventral

tegmental area.99 The other relevant circuits may involve the

short-range hypothalamic regions (i.e., tuberal nucleus)100 and

more distant areas, such as the insula.101–103

Emotional factors modulate hedonic food intake. Stress,

boredom, and other emotional states can lead people and

animals to seek comfort in food. Desserts, often associated

with comfort and indulgence, can be particularly appealing.

Cultural norms and market forces can also play a role. In

many cultures, dessert is a customary part of a meal, and

people may eat it out of habit or tradition, regardless of hunger.

The pervasive presence of these foods in the environment,
6 Neuron 113, June 4, 2025
including at schools, workplaces, and

social gatherings, normalizes their con-

sumption. Social norms and peer pres-

sure can also encourage eating these
foods.107,108 In mice, transmission of food safety signals medi-

ated by semiochemical transmission may lead to shifts in the

food ingested.109 This complex interplay between emotional,

social, and environmental factors influencing hedonic food

intake shares notable parallels with the mechanisms underlying

addictive behaviors.

WHAT ADDICTION RESEARCH AND ANIMAL MODELS
CAN TEACH US ABOUT OVEREATING AND OBESITY

Drug addiction is a global health challenge whereby vulnerable

individuals seek and use drugs compulsively. Research over

the last three decades has led to the emergence of a putative un-

derlying circuit model. A current drug addictionmodel, therefore,

posits that increases in mesolimbic dopamine are the initial step

observedwith all addictive drugs.110,111 This is believed to be the

mechanism underlying the strong reinforcing properties of

drugs. The cellular correlate of drug adaptive behavior are forms

of synaptic plasticity in the NAc, whereby dopamine modulates

the induction of potentiation of glutamate afferents onto

MSNs.112,113 Some drugs also lead to negative reinforcement

following extended use. This is particularly the case for opioids,

which acutely inhibit a neural population in the central amygdala,

which becomes hyperactive during withdrawal observed after

chronic exposure.114 Ultimately, compulsion is observed when

more dorsal circuits are recruited.115 Compulsive mice have a

potentiated glutamate projection onto neurons of the dorsal

striatum.116 Although this addiction model is admittedly simpli-

fied, it highlights key elements that are also observed in common

obesity. For example, positive and negative reinforcement can

be loosely mapped onto the hedonic and homeostatic feeding

systems. Moreover, evidence from human studies indicates

that compulsive eating behavior is present in some individuals

with obesity. In a population of patients referred for bariatric sur-

gery, the prevalence of binge eating was 28.8%,117 while in

another study, the estimation was based on the observation of

night eating disorder, which shares some commonalities with

compulsion.118 This is further supported by neuroimaging data
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Figure 5. Mechanism of action of GLP-1
and MC4R agonists
AgRP neurons of the ARC express GLP1 re-
ceptors that couple to Gs proteins and activate the
membranous adenylate cyclase (AC). PKA is
activated downstream of cAMP, which increases
calcium entry through Cav1.4 channels that
eventually activate SK3 potassium channels and
shut down neuronal activity.139 As a result, these
GABA neurons no longer inhibit MC4R neurons,
and hunger decreases. Setmelanotide activates
MC4R neurons via a G protein-independent direct
interaction with Kir7.1 potassium channels.140
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demonstrating considerable overlap in the neuronal substrates

affected in both addiction and obesity.119

SYNAPTIC PLASTICITY AS A CELLULAR SUBSTRATE
FOR OVEREATING

Our research and observations from others have shown that

drug-evoked synaptic plasticity is the cellular substrate for

addiction-related behavior. For example, strengthening excit-

atory synapses onto D1R-expressing MSNs is causally involved

in locomotor sensitization. Similarly, palatable food can lead to

enhanced synaptic drive of glutamate synapse onto dopamine

neurons of the VTA120 as well as alter excitatory synaptic trans-

mission in the NAc,121 but the significance of this finding for food

intake remains elusive. When overeating is induced by acute

food restriction (eating to catch up from an energy-depleted

state), GABA transmission of D1R-MSNs onto LHA neurons

may be depressed, opening the gate for enhanced food

intake.47,122 These findings are also corroborated by the direct

stimulation of LHA GABA neurons, which trigger the motor pro-

gram for eating, even without food. It is, therefore, plausible

that changes in synaptic transmission underlie the overeating

of palatable food. There is also evidence that plasticity of gluta-

mate afferents onto AgRP neurons may contribute to the behav-

ioral adaptations,123 which has motivated the design of an

aliphatic molecule activating GLP-1 receptors and, at the same

time, inhibiting NMDA receptors (NMDARs).124 The study dem-

onstrates alterations in transcriptomic and proteomic responses

within the hypothalamus that may be linked to glutamatergic

signaling and synaptic plasticity. Still, more research is needed

to see the emergence of a circuit model akin to the one described

by drug addiction.

MECHANISMS OF OBESITY TREATMENTS

Current pharmacological approaches primarily use GLP-1 re-

ceptor (GLP-1R) agonists to reduce food intake and body

weight. Understanding their effects requires integrating the

bioavailability of endogenous GLP-1125 and pharmacological

GLP-1R agonists, the expression loci for GLP-1 receptors, and

the ensuing neural activity changes. The endogenous peptide
is secreted by intestinal L cells and,

among many other effects, reduces

food intake by acting on central GLP-1

receptors. However, its effect is limited
by the short half-life. Endogenous GLP-1 may act locally through

neural pathways rather than as a circulating hormone,126,127

influencing appetite suppression and gastric motility via enteric

and sympathetic circuits. In this model, intestinofugal neurons

secreting GLP-1 in the ileum would mediate appetite reduction

by signaling to the hypothalamus through spinal afferents.

GLP-1 is also produced and released by nucleus of solitary track

(NTS) neurons,128 some of which directly project to the hypothal-

amus to regulate satiety.129 Central GLP-1-mediated effects are

diverse, as the receptor is expressed across many brain regions.

GLP-1R agonists can have long half-lives (up to 1 week130) but

have poor blood-brain barrier (BBB) permeability. Some of the

most prominent effects may thus arise in the circumventricular

organs, largely devoid of a BBB, and select regions close to

the ventricles, such as the LS and the Arc.

Nevertheless, multiple brain regions, such as the substantia

nigra, VTA, amygdala, NAc, hippocampus, several regions of

the hypothalamus (paraventricular nucleus of the hypothalamus

[PVH], arcuate nucleus [ARC]), and hindbrain express GLP-1

receptors.21 Brain-wide c-Fos monitoring of an acute applica-

tion of a GLP-1 receptor agonist reveals a complex network

of activated neurons, many of which may be indirectly

affected.131

GLP-1 thus impacts food intake via central and peripheral

mechanisms,132 such as actions in the NTS.133,134 Interestingly,

some NTS GLP-1R-expressing neurons have been reported to

directly project to both the VTA and NAc directly.135,136 Recent

findings suggest at least two distinct NTS populations of GLP-

1R-expressing neurons, which can drive satiety or aversion137

separately. This further implicates GLP-1 signaling in controlling

hedonic feeding and reward processing. Overall, satiety termi-

nates the meal and reduces the initiation of subsequent

feeding.93,138 GLP-1 Rs are expressed in AgRP and POMC neu-

rons,40 coupled to G proteins, activate adenylyl cyclase, and in-

crease intracellular calcium. Because of the presence of cal-

cium-dependent K conductances of the SK3 type (small

conductance calcium-activated potassium channel 3), the net

effect is reduced activity139 within minutes of feeding (Figure 5).

Semaglutide and tirzepatide are examples of synthetic

GLP-1R agonists. They are administered by subcutaneous injec-

tions or orally and reduce weight on average by 15%–20%.141
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Box 2. Impact of food offer on overeating

Certain foods’ availability may impact obesity prevalence and help with treatment. Well-documented examples concern changes

in the food offered in developing countries,152 where the combined global burden of underweight and obesity has increased in

most countries between 1992 and 2022. Obesity prevalence now outpaces the decline in underweight, particularly in countries

across the Caribbean, Polynesia, Micronesia, and the Middle East. By contrast, underweight remains prevalent in South Asia

and parts of Africa. Notably, 89% of countries for women and 73% for men had higher obesity rates than underweight in 2022.

The double burden of being underweight and obesity continues to shift toward obesity, especially in school-aged children and

adolescents. The food offered may also help to reduce obesity—for example, reducing sugar-sweetened beverage

consumption in overweight and obese adolescents who received noncaloric beverages for a year. The experimental group saw

a significant reduction in BMI and weight after the first year. However, at the two-year follow-up, these effects were not

sustained. The study suggests that cutting sugar-sweetened beverages can temporarily affect weight but highlights the

challenges in maintaining long-term benefits.153
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Semaglutide does not pass the BBB but can access the brain-

stem, septal nucleus, and hypothalamus via the circumventricu-

lar organs.131 As a result, direct and indirect c-Fos activation is

observed in many brain regions, including hindbrain areas

directly targeted by semaglutide and secondary areas without

direct GLP-1R expression, such as the lateral parabrachial nu-

cleus. GLP-1R agonists directly affect homeostatic appetite

control centers, reducing hunger and food intake. Interestingly,

during chronic GLP-1R agonist therapy, the orbitofrontal cortex

shows increased activity when a subject is presented with palat-

able food cues,142 whichmay increase the consumption of palat-

able food, favoring hedonic eating. GLP-1R agonists slow

gastric emptying. This delayed digestion moderates the post-

meal rise in blood sugar and prolongs the feeling of fullness.

GLP-1R agonists may also have side effects (e.g., loss of muscle

mass, anhedonia, and depression).

Glucagon (GCG), produced by intestinal L cells, pancreatic

alpha cells, and neurons located within the nucleus of the solitary

tract,143 increases glycemia, and GCG receptor agonists can be

used in conjunction with GLP-1R agonists to enhance weight

loss.144 This effect is attributed to GCG’s peripheral lipolytic ef-

fects, which enhance fat metabolism.145 Such a dual approach

leverages central and peripheral mechanisms of GLP-1’s

glucose regulation and appetite suppression alongside GCG’s

peripheral effect to increase energy expenditure through

lipolysis.
Box 3. Food addiction—a controversial concept

Striking parallels between drug addiction and overeating in ob

associated with escalation of use, a feeling of loss of control

consequences due to excessive intake. A key symptom of drug

addictive substance. While compulsion is a term that has many

and intake of a substance (including foods), even when this is

compulsive overeating occurs due to exposure to palatable foo

hypothesis posits that continued exposure to palatable food of h

loss of control in some individuals. Two key assumptions—yet to

analogous to addictive drugs and (2) that specific individuals ca

with substance-use disorder. Neither of the two is fully establish

the ‘‘medicalization of common eating behaviors.’’157 While the

overeating, the concept of food addiction is not empirically sup

between these two pathological behaviors are striking, it should b
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Several additional active principles with central and periph-

eral targets are clinically approved and often used in combina-

tion with GLP-1R agonists. A bimodal molecule that combines

NMDAR antagonism with GLP-1R agonism carried the hope of

effecting synaptic plasticity only in the neurons relevant for

overeating. Still, the circuit adaptations need to be further

investigated to establish a causal link.124 A glucose-depen-

dent insulinotropic polypeptide (also called gastric inhibitory

polypeptide, GIP) receptor agonists and GCG (coded by the

GCG gene) receptor agonists act synergistically with sema-

glutide to enhance weight loss.146 GIP is synthesized by intes-

tinal K-cells and is secreted primarily in response to food

intake, with a notable increase following meals rich in fats.

GIP plays a role in regulating body weight and food con-

sumption by activating the GIP receptor (GIPR) signaling

pathway.147 Interestingly, GIPR agonists and antagonists

can induce weight loss, a seemingly paradoxical phenome-

non. One possible explanation is that prolonged GIP exposure

may lead to receptor desensitization, ultimately causing an

antagonistic effect.148 Most importantly, these treatments

and GLP-1 monotherapy are typically transient, and patients

often regain weight upon discontinuing the treatment. The

mechanism of the ephemeral effect remains elusive but may

be explained by the acute inhibitory effect on AgRP neurons.

At the societal level, this transient efficacy underscores

the need for long-term strategies that address biological
ese individuals have been described.154 Both conditions are

, social and personal distress,155 and adverse physiological

addiction is the compulsive nature of the consumption of the

definitions, it can operationally be understood as the seeking

associated with major negative consequences.115 Whether

d remains controversial,3 but see Fletcher and Kenny.156 The

igh caloric density may override metabolic needs and cause a

be empirically tested—are (1) that certain foods have qualities

rry an individual vulnerability to lose control, akin to persons

ed. The concept of food addiction has also been critiqued as

circuit model of addiction may be helpful to parse circuits of

ported by neurobiological investigations. While the similarities

e cautioned to treat maladaptive feeding as an addiction.



Box 4. Setmelanotide is a novel treatment for a rare form of monogenic obesity

MC4R is a member of the melanocortin receptor family (MCRs), a class-A G-protein-coupled receptor (GPCR) subgroup consist-

ing of five subtypes (MCR1–5) thatmediatemultiple physiological effects in humans.158MC4R is an unusual GPCR as it has both an

endogenous agonist and an endogenous antagonist.159 a-MSH, derived from POMC, binds to MC4Rs and has anorexigenic ef-

fects. Conversely, AgRP antagonizes MC4Rs to stimulate appetite.160 MC4R is abundant throughout the mammalian central ner-

vous system (CNS) and is highly expressed within the paraventricular nucleus (PVH). The MC4R agonist setmelanotide treats ge-

netic obesity caused by a single-gene mutation.161 The MC4R couples to Gs proteins, but the receptor also inhibits Kir7.1

potassium channels directly.140 As a result, upon setmelanotide treatment, PVH neurons depolarize, and food intake decreases.
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mechanisms and behavioral and environmental factors

contributing to weight regain.

FUTURE RESEARCH

The current mouse models offer a mechanistic investigation to

delineate the relevant circuits of hedonic overeating and under-

stand how this may override homeostatic control. The proposed

circuit model for overeating is an essential step toward a

comprehensive understanding of the disorder and may enable

novel rational therapeutic approaches. Additional consider-

ations of obesity that need to be integrated in the future are

the effects of stress, social separation, and social incentives to

eat. The microbiome and epigenetic mark in fat cells149 is a topic

of growing interest and has recently garnered significant

attention.

The ingested food directly shapes the gut flora, and gut-brain

signaling may lead to changes in feeding circuit function. The

mechanistic insight will facilitate the interpretation of genetic

studies of the highly polygenic common obesity by providing

novel categories for gene ontology studies. The translatability

of animal studies has been challenged because food addiction

has been investigated as a heterogeneous concept, and causal-

ity in the development and maintenance of obesity was chal-

lenging to establish.150,151 Finally, individual vulnerability to over-

eating remains a formidable challenge and will have to be

considered when making recommendations for food regulations

(Box 2).

CONCLUSIONS

The neurobiology of overeating involves complex interactions

between homeostatic and hedonic feeding systems, genetic

predispositions, and environmental factors. Understanding the

neural circuits and synaptic mechanisms underlying these be-

haviors is essential for developing effective interventions for

obesity and related health conditions. Future research should

identify the synaptic circuit adaptations responsible for over-

eating and parse the relative contributions of homeostatic and

hedonic feeding systems. Establishing a comprehensive model

of overeating, integrating insights from addiction research, will

provide a solid foundation for addressing this critical public

health issue.
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92. Fuente González, C.E., Chávez-Servı́n, J.L., de la Torre-Carbot, K., Ron-
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